PHYSICS

Part A: Conceptual Questions

- 1. What is the principle of superposition of electric forces?
- 2. Define electric field. What are its units?
- 3. Explain the concept of electric dipole and dipole moment.
- 4. Define equipotential surface. Why are electric field lines always perpendicular to them?.
- 5. Explain the significance of the term 'dielectric constant'.
- 6. Define electric flux. What does positive and negative flux signify?

Part B: Numerical Problems

- 1. Two point charges +3 μ C and -3 μ C are placed 5 cm apart. Calculate the electric field at a point on the axial line 10 cm away from the center of the dipole.
- 2. A charge of 5 μ C is placed at the center of a cube. Calculate the electric flux through one face of the cube.
- 3. A parallel plate capacitor is charged to 100 V. If the plates are separated by 2 mm and the area is $0.02~\text{m}^2$, calculate: Capacitance Charge stored Electric field between the plates
- 4. Calculate the potential energy of a system of two charges +2 μ C and -2 μ C placed 0.2 m apart in air.

Part C: Activities & Diagrams

- 1. Draw neat and labeled diagrams of the following:
- Electric field lines of a dipole
- Electric field lines for two like charges
- Equipotential surfaces for a point charge and a uniform electric field
- 2. Make a chart showing all formulae and graphs related to electric field, potential and capacitance

Part D: Case-Based Question

Case Study:

- 1. A student sets up a parallel plate capacitor with a dielectric slab inserted between the plates. He notices that the capacitance increases when the dielectric is present.
- 2. Why does the capacitance increase when a dielectric is introduced?
- 3. How does the energy stored in the capacitor change when the dielectric is inserted, keeping the voltage constant?

CHEMISRTY

Solutions & Electrochemistry

Part A: Conceptual Assignments

Chapter: Solutions

- 1. Define the following with examples:
 - a) Ideal and non-ideal solutions
 - b) Raoult's Law
 - c) Colligative properties
- 2. Differentiate between:
 - a) Molarity and Molality
 - b) Osmotic pressure and Vapour pressure lowering

Chapter: Electrochemistry

- 1. Define the following:
 - a) Electrolytic cell and Galvanic cell
 - b) Standard electrode potential
 - c) Cell notation
- 2. Differentiate between:
 - a) Electrolytic and galvanic cells

b) Conductance and conductivity

Part B: Numerical Practice

- 1. Calculate the molality of a solution containing 18 g of glucose (C₆H₁₂O₆) in 250 g of water.
- 2. A solution containing 1.8 g of a compound in 100 g of water gave a depression in freezing point of 0.372 K. Calculate the molar mass of the compound. (Kf for water = 1.86 K kg/mol)

MATHEMATICS

Chapter 1: Relations and Functions

- 1. Definition of relation and types of relations (reflexive, symmetric, transitive).
- 2. Definition of function types of function (one-one, onto, into).
- 3. Solve problems on inverse functions.
- (a) Show that the relation R in the set R of real numbers, defined as $R = \{(a, b): a \le b^2\}$ is neither reflexive nor symmetric nor transitive.
 - (b) Check whether the relation R is defined in the set $\{1, 2, 3, 4, 5, 6\}$ as $R = \{(a, b): b = a + 1\}$ is reflexive, symmetric or transitive.
 - (c) Show that the relation R in R is defined as $R = \{(a, b): a \le b\}$ is reflexive and transitive but not symmetric?
 - (d) Check whether the relation R in R Defined by $R = \{(a, b): a \le b^3\}$ is reflexive, symmetric or transitive.
- 5. Check the injectivity and surjectivity of the following functions:
 - (i) f: N \rightarrow N given by $f(x) = x^2$
 - (ii) f: $Z \rightarrow Z$ given by $f(x) = x^2$
 - (iii) $f: R \to R$ given by $f(x) = x^2$

Chapter 2: Inverse Trigonometric Functions

- 1. Write inverse Trigonometrical function (principal value branches) along with their domains and ranges.
- 2. Find the value of the following:
- 3. Prove that
 - (a) $2\sin^{-1}(3/5) = \tan^{-}(24/7)$
 - (b) $\sin^{-1}(8/17) + \sin^{-1}(3/5) = \tan^{-1}(77/36)$
 - (c) $\cos^{-1}(4/5) + \cos^{-1}(12/13) = \cos^{-1}(33/65)$

Homework Exercises:

4. Find the inverse of a function.

Sample Questions:

- (a). Evaluate cos-1(-1/2).
- (b) Solve $\sin^{-1}(3/5) \sin^{-1}(8/17) = \cos^{-1}(84/85)$

PROJECT WORK

1) - Draw a graph of sin-1x, cos-1x, tan-1x on chart paper.

ENGLISH:

Prepare the Author's Directory for the text book, VISTAS and FLAMINGO.

- 1 whereabouts of the writer
- 2. Works and years of publication
- 3. Awards won
- 4. Birth and Death

Minimum one FULL PAGE content for each writer.

No text should be identical with anybody elses'

PHYSICAL EDUCATION

1. Activity-Based Question:

Prepare a Personal Fitness Plan

Design a 3-week fitness plan for yourself based on your current fitness level. Include exercises for flexibility, strength, endurance, and balance. Track your weekly progress and attach photos or a video (optional) as evidence of your

2. Assignment-Based Question:

Research and Write an Article on: "Importance of Yoga in Daily Life" Include the following points:

- 1. Definition and origin of Yoga
- 2. Benefits of Yoga for physical and mental health
- 3. Role of Yoga in managing stress and improving concentration
- 4. Conclusion with your personal opinion or experience with Yoga.